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NON-GUASSIAN STATISTICAL MODELS OF SURFACE WAVE FIELDS
FOR REMOTE SENSING APPLICATIONS

Norden E. Huang
NASA, Goddard Space Flight Center
Greenbelt, MD 20771

Rased on the romplete Stokes; wave model with the bias term and using a simple
mapping approack and an iteration solution method, we established a formula for the
joint prohability density fuction of the surface slope-elevation of a nonlinear ran-
dom wave field., The formula requires three parameters to define the whole density
functicn: the rms surface elevation and slope values and the significant slope. This
model represents the dynamics of the wave in a more direct way than the Gram-Charlier
approximation. Based on this new statistical model and laboratory experiments, form-
ula and numerical values of EM bias and dynamics bias are derived. The results inidi-
cate that various biases should be considered seriously if accuracy of the altimeter
measurement is required in centimeter range.

1. INTRODUCTION

Wind waves are aiways random. The randomness is the result of the generating
forces as well as the consequence of the dynamic processes in wave evolution which
induce different kinds of instabilities. Consequently, the oniy meaningful descrip-
tions of the wind wave fields are the various statistical measures; among them the
probability density functions of the surface elevation and slope are the most basic
ones, With the recent development of active microwave remote sensing the techniques,
the need for the statistical description of the ocean becomes more uragent, for the
return signals of the radars are various convolution of radar signals and the ocean
surfacz and these return signals are our oniy information sources. Successful extrac-
tion of the geogphysical parameter, therefore, depends critically on our knowledge
of the ocean surface statistical properties. For the remotz sensing applications,
the most important statistical measure is the joint probability density function
of the slope and elevation of the ocean surface.

This specific probability density function is necessarv for evaluating the back-
scattering equation for a near nadir-looking radar as stated by Barrick (1972), Brown
(1978), Valenzuela (1978), and Jackson (1979). \Unfortunately, due to the nonlinear
nature of the ocean waves, a realistic functional form has been elusive. Faced with
this difficulty, past investigators have adopted a simple model that assumes all the
statistical processes to be Gaussian and joint Gaussian. With this assumption, the
statistical properties of the ocean surface become totally independent of the control-
ling dynamic processes. (onsequently, the treatment of the ocean surface statistics
is no different from any other random Gausstfan process such as the noise of electronic
circuitry. Indeed, most of the present statistical results used in describing the
ocean surface can be traced to the classical set of papers by S. 0. Rice (1944, 1945
and 1948), with certain extensions into two dimensions by Longuet-Higgins (1957, 1963,
for example). Because the randomness of the ocean surface wave is the consequence
of the generating forces as well as the controlling nonlinear dynamic processes which
include various types of instabilities (see, for example, Phillips, 1977 and Yuen
and Lake, 1982), the resulting surface geometry can not be adequately described by a
linear superposition of statistically independent events. Thus the statistical pro-
cess can not be Gaussian, Therefore, any results based on a Guassian assumption,
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though perhaps useful for some qualitative purposes, do not satisfy the need of our
present and future enqineering and remote sensing requirements.

The nonlienar effect of yravity waves on statistical properties of the wave field
has heen investigated first by Lonquet-Higgins (1963), who treated the surface statis-
tics as nearly Taussian and represented it by a Gram-Charlier series in which the
ckewness r¢ the surface elevation was determined through rigorcus dynamic equations.
Thic analysis was later extended by Jackson (1979) to the joint probability density
distribution of slope and elevation. These results rcpresented a major breakthough
in the non-Gaussian statistical description of the ocean surface. Successful as they
were, there are certain shortcomings: the dpproximation gives negative density values
and it requires higher moments to implement. These shertcomings put a Timitation the
applications of the results.

Recently we established a mapping technique to model the non-Gaussian process of
the ocean surface. This technique was first used by Tayfun (1980), and was later suc-
cessfully modified and applied to the non-Gaussian processes described by the nonlin-
ear surface wave elevation density function (Huang et al, 1933} and joint sTope and
elevation density function (Huang et al. 1984). In this paper we will summarize the
technique used in constructing the non-Gaussian density functions and discuss the
specific applications to the remote sersing techniques.

2. THE NEW STATISTICAL MONEL

The new statistical model for a nonlinear deep water wave field is hased on the
Stokes expansion, i.e, 3
a*k 3a°k?
4 =%a2k+ams'x+—z—cos2’)(+
Let us start by considering the linear Gaussin case for which the sea surface can be
represented hy

Cos 3K + - (2.1)

zl = acos,, (2.2)

with x as the phase function
x = kx - nt +¢,

where k is the wave number, n is the frequency and ¢ is an arbirary phase shift uni-
formiy distributed. It is well known that if a is Rayleight, the zl1 is zero-mean
2$ngian (see, for example, Papoulis, 1965). For the same amplitude and phase func-

g2 = asiny , (2.3)
is also Gaussian. Furthermore, r1 a2 .d 2 are statistically orthogonal to each other.
Rased on ¢l and 2, we can define the normalized random variables

Z, = acos/x/(a‘/z )2 ; zZ, = asin’)(/(a’/z )"‘ , (2.4)

with the overbar indicating mean quantity, and the joint probability of Z; and Zp is
simply
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p(Z»,Zz)=5'; exp{-y'(zf+z§)}_ (2.5)

If the surface wave prefile is represented by the Stokes wave, a normalized zero-
mean random variable can be defined as -
I Sl S il S (2.6)
1= o™ J '
where o is the standard deviation of the surface elevation. From \2.1) we can also
get the surface slope

. 2. A AP TE O
{x = -~ ak smfx - a*k*sin 2% 3 a’k Sm3X - ... (2.7)
Aqain, we can define another normalized zero-mean random variable from (2.7) as
1= S/ (2.8)
In terms of 71 and 27, n and * become
2 =z 3 2}-322% , 2 2. 222 q 3225, .3t
= — K= —_— - = = L4 €2 _ 2 2,2;-2, ?.
TRk g 2y okt ok, 1=-2- 225 g Tol7.9)

in which
N = (1+8n2§2)%2
M= (1+leT§2y2
and § is the siqnificant slope of the wave field defined as
-
§ = (#)2/ 5 |
with x =2r /k,

]

Since we know the joint density function of Z] and 7y, it is easy to write the
joint density function of any two functi. ., of 2 » and Zp through & mapping technique
known as the fundamental theorem of probability %Papoulis, 1965), i.e.

P(2,,22)d2,d2, =Pf2.(q.s).z;(q.§)} J(%Zs—‘)d,}di , (2.10)

in which J() s the Jacobian of the transformation.

Following this nethod, Huang et al. (1984) obtained the joint slope-elevation
density function as:

P15y = TE L= 4ok (37 -4y + amigy/ 0] o2
Nz’lz”"'!z-[2')('12-')!4’-&4'];"42 Jeok
. 6 _.‘_ 4 - 2 2,202
e A I ["7" /o ~6n*+1+ QMintg /maz)N’-]azkz :

(371874 432+ AMEg4 /4 2 ) 2
Statistically, the joint specular point and elevation Cistribution is the conditional
distribution of

PG ) vg 20), (2.12)

For a long crested wave field or a narrow band of energy spread case,

(2.11)
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P(T] 93¢ =0) 2 p(() ¢x=0). (2.13)

Thus a good approximation of the specular point distribution can be obtained by simply
setting f =0 in (2.11). Hence, in terms of the normalized variable,

Pl g=0) = % [\-4q¢k + (Ez?‘ '12‘4)3‘2k2]
N*n? =21 (n?—1) N? .
.expi_%[ '\ - l(:] l)lN <Tk2 zls (2.14)
+ (3 1% -eq"+)N stk* J

where 2 is the normalized factor to guarantee

[+ +]
| #(qlg=0)aq = 1.
-®
From equa*ion (2.11) and 2.14) we can see that the density functions are obvious-
1y skewed with respect to n. This skewness is caused by the harmonic distortion of
the wave profile described by Stokes expansion. Comparison between the throretical
and experimental results have been presented by Huang et al. (1983, 1984). The agree-
ments are all good.

3. REMOTE SENSING APPLICATIONS

A particularly interesting aspect of the specular point density-functions is the
location of the mean. More specifically, the difference hetween the mean of the spec-
ular point density and the mean of the surface elevation density functions. This
difference is the critical electromagnetic bias (Jackson, 1979; Walsh et al., 1983),
for the mean rea surface measured by any nadir looking electromagnetic device is not
the true mean out the mean of the reflecting facets or the specular points. Based
on our observational data, the mean is determined and plotted as a function of the
significant slope in Figure 3.1. The data show an almost 1inear increasing of the
bfas. The mean value of the theoretical model can be calculated by the ratio of the
first moment to the zeroth moment of the density function. The value of the bias is
the difference between the corresponding values of the mean in specular point density
and elevation density functions. The numerical value calculated based on (2.14) is
also given 1in figure 3.1. Although they do not exactly conincide, the trend is
unmistakeable. Better model with more realistic wave profile in two-dimension may
be needed.

Another aspect of the nonlinear effects in the wave profile is the non-zero
mean - the deviation of the local mean surface under waves from the undisturbed calm
surface. The existence of this non-zero mean in a nonlinear wave train * , buen shown
by Stokes (1880), Rayleigh (1917), De (1955) and, more recently, Schwartz (1974) and
Longuet-Higgins (1975). In the past, the terr a%k/2 in equation (2.1) has been treated
as a negligible constant in all wave studie.. It is discarded by simply shifting
the coordinate system up by the exact amount of a<k/2. This is permissible as long
as our interest in the oscillatory part of the motion. But the coordinate shifting
is no longer permissible for our present interest because the amount shifted is
precisely the dynamic sea state bias which could have far reaching consequence in
the accurate determination of the mean sea surface using an altimeter.

The existence of this non-zero mean in a nonlinear wave train can he explained

by mass balance in the wave motion. It has been shown by Stokes that a non-zero
mean mass transport always accompanies the wave motion. For deep water waves, this
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velocity is
2kz
u, = dnke (3.1)

where Z is the vertical position of a particle. The rate of total mass transport
through any vertical section is given by

o
2
Q=1 dnk e** 4z = dn/z (3.2)
-
The surface elevation change caused by this mass transport can be calculated as
Aﬂ.y, = QT/A b (3-:)

in which T and » are the wave period and wave length respectively. Using the defini-
tior. of wave number and frequency, one can easily show the equivalenc. between (3.3)
and t e constant term in (2.1).

For a random wave field, the Stokes crift is given by Huang (1971) as

|

&, = Sf 2nk X(g'._,'\)tzl’k‘zd,\gdn (3.4)
. Kn ~n

Therefore, the rat;of the total mass transport s

° 3.5
Q = S u, dz (3.5)
and the bias is ~% "
K 2ik )z
={° (¢ L o nk Xty e dkdndz
A'e\w n -~ -~
“ kN
(3.6)
= §f k x(k.n) dxdn ,
kn
in which X{k,n) is -+ . -<:tional wave number frequency spectrum. In order to evalu-

ate (3.6), a speci i 5. ¢ rum form has to be adopted. Since the quantity sought here
in a scaler, Ah, we can raduce (3.6) by using the dispersion relationship to eliminate
k and reduce Y(k,n) to a simple frequency spectrum. Then adopting the simnlified
Wallops spectrum model (Huang et al., 1981), we obtain

-

Af\'w = 21’:("2)/1§ (m—\')/(m-g) ’ (3.7)

where m is a cimple function of the significant slope, §, defined by
2

mo= | 0a (2T Siog2 |
and

§ = (-K-‘ )Vz /)\o .
with 3, as the wave length of tiie wavc having a frequency at the peak of the spectrum,
ﬂoo

If tne significant wave height, Hy,3, is used a3 in most practical applications, (3.7)
can be written as

Aﬂ.u = -Tzi $ H)s (m-t)/(m-g) (3.8)
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The typical value of § in the open ocean is around 0,01, which gives the value of m
around 13; the dynamic sea state bias, Ah, would be <round 1.5% of the significant
wave height, Nuring a storm, the § value could reach 0.02 as an upper bound, and then
Ah would be as high as 3% of Hys3. For the sea state dominated by swell, however,
%he dynamic bias can almost be neglected because § would be of the order of 0.001 or
ess.

As an estimate of the magnituvde of this bias, we use the empirical formula given
by Neumann and Pierson (1965), then

Hy/3 = 2.12¢1072 W2 (3.9)

for 2 fully developed sea. !Inder such conditiors the phase velocity of the energy
containing waves equals the wind speed. Thus the sea state hias can be written as

Ahw =275 x107% W2 (m-1)/(m-3) (3.10)

This value is plottad in Figure 3.2 For all wind speed, the high sea state this
bias is not negiigible,

4. CONCLUSION

In this study, we summarized the non-Gaussian statistial models based on Stokes
Wave expansion. The rew statistical model indicates the existence of skewness which
is the cause ¢f the EM bias in the remote sensing application. Furthermore, the exis-
tence of the nun-zero mean in Stokes expansion which contributed to the Skewness can
also cause a dynamic bias. The magnitudes of hoth bias terms are estimated. For
future altimeter applications, we should seriously consider the correction of these
hiases.
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